Journal of Organometallic Chemistry, 412 (1991) 319-326 Elsevier Sequoia S.A., Lausanne JOM 21867

A facile synthesis of iminosilanes. Crystal structure of $(Me_3C)_2(THF)Si=N-SiMe(CMe_3)_2$

Simone Walter, Uwe Klingebiel * and Dieter Schmidt-Bäse

Institute of Inorganic Chemistry, Göttingen University, Tammannstraße 4, W-3400 Göttingen (Germany) (Received February 24th, 1991)

Abstract

The aminofluorosilane 1 $(Me_3C)_2SiFNHSiMe(CMe_3)_2$ is formed by treatment of $(Me_3C)_2SiF_2$ with $(Me_3C)_2MeSiNHLi$. The lithium derivative of 1, $(Me_3C)_2SiFLi(THF)_2NSiMe(CMe_3)_2$, 3, is formed by treatment with n-C₄H₉Li. Treatment of 3 with Me_3SiCl gives Me_3SiF, LiCl and the iminosilane $(Me_3C)_2(THF)Si=N-SiMe(CMe_3)_2$, 4. Compound 4 can be distilled and recrystallized from benzene. Its crystal structure has been determined.

Introduction

The first unsaturated silicon compounds, disilenes [1], and silaethenes [2], were prepared in 1981. In the mid-1980's the first iminosilanes were synthesized independently and by different in our laboratory [3,4] and in Wiberg's [5].

The synthesis we developed is based on an intermolecular fluorine-chlorine exchange at lithiated aryl-aminofluorosilanes (Scheme 1).

Because of their high stability aminofluorosilanes [4,6] and their mainly-covalent character the lithium derivatives, many of them containing bulky substituents can be distilled or sublimed *in vacuo* without decomposition, and so thermally-induced LiF-elimination leads to dimerization or rearrangement of the free iminosilanes [7]. Thus a better leaving group had to be found. One of the remarkable features of lithiated aminofluorosilanes with bulky substituents is that they do not undergo substitution on treatment with Me₃SiCl but instead give Me₃SiF; that is, an intermolecular fluorine-chlorine exchange takes place [3,6,7] (Scheme 1). A necessary condition for this is that a Lewis base, e.g. THF, must be present.

We showed by structure determinations that the coordination of the lithium to Lewis bases has the following effects [7]: (a) elongation of the Li-N bond; (b) movement of the lithium toward fluorine; and (c) lengthening of the Si-F bond. Thus formation of the Si-F bond on going to Me_3SiF is favoured energetically.

The lithium-aminochlorosilanes are far less thermally stable than the analogous fluorine compounds [3,6], but evenso the aryl-substituted lithium-aminochlorosi-

Scheme 1

lanes can be isolated [6]. The silyl-substituted compounds, however, form iminosilanes by LiCl elimination at room temperature.

Results and discussion

Scheme 2 shows the stepwise synthesis of the iminosilane 4.

Di-tert-butyldifluorosilane was found to react with lithiated di-tert-butylmethylaminosilane to give the aminofluorosilane 1, along with trisilazane 2 as a by-product.

 $(CMe_3)_2SiF_2 + LiNHSiMe(CMe_3)_2$

With butyllithium 1 formed the derivative 3, which yielded colourless crystals from hexane/THF. The crystals were taken up in C_6D_6 and their NMR spectra revealed the presence of two molecules of THF coordinated to the lithium atom. There was also a significant downfield shift of the fluorine signal in the ¹⁹F-NMR

spectrum compared with that for 1 (a difference of nearly 13 ppm) and a strong upfield shift of the signals in the ²⁹Si-NMR spectrum.

Comparison with analogous lithium derivatives [7], the structures of which we determined, allowed us to suggest the structure shown in Scheme 2. To confirm this we carried out a single crystal X-ray study. As mentioned above, addition of Me₃SiCl to 3 immediately gives Me₃SiF, as revealed by ¹⁹F-NMR spectroscopic monitoring. After some of the solvent had been evaporated off the iminosilane 4 crystallized from the mixture. It was found to be remarkably stable; it could be separated from LiCl by distillation *in vacuo* without decomposition and without loss of THF. During the distillation it crystallized again.

In the ¹³C-NMR spectrum of 4 the C₂O-signal of the THF molecule appears at 73.78 ppm—a downfield shift of nearly 6 ppm compared with that for free THF. This reflects the strong Lewis-acid character of the three-coordinate silicon atom in the intermediate.

The comparison with the ²⁹Si-NMR shifts for the free iminosilanes known so far shows that the unsaturated silicon atom is a stronger Lewis-acid centre in the silyl-substituted compounds $[\delta(^{29}Si) \approx 78 \text{ ppm}]$ [5] than in the aryl substituted ones $[\delta(^{29}Si) \approx 60 \text{ ppm}]$ [3,4]. This explains why the same synthetic approach results in addition of the Lewis base THF in the case of 4 whereas the aryl substituted free iminosilane is left unattacked.

Traces of moisture lead to formation of the siloxane 5 (eq. 1):

An X-ray structural analysis was carried out on single crystals of 4, recrystallized from benzene.

Crystal structure of 4

The structure determination of 4 confirms the structure suggested on the basis of the NMR data. This THF – adduct (Si(1)-O(1) 190.2(2) pm) of an iminosilane has a nearly linearly coordinated nitrogen atom (174.3(1)°), with two significantly different Si-N bond lengths. These bond lengths (Si(1)-N(1)) 159.6(2) pm, Si(2)-N(1)166.1(2) pm) reflect the difference between a double and a single Si-N bond [5,8], although the THF-adduct-formation has resulted in a slight elongation of the double bond and a shortening of the single bond. The unsaturated Si(1) atom has a distorted tetrahedral geometry; the two tert-butyl-groups and the nitrogen atom tend towards forming a trigonal planar environment around Si(1) (bond angle sum 347.7°). The tert-butyl-groups are in a synclinal conformation with respect to each other. Compound 4 shows the same general structural features as the only other known compound of this type, THF \cdot Me₂Si=N-Si(CMe₃)₃ [5]. The only noteworthy difference between THF \cdot Me₂Si=N-Si(CMe₃)₃ and 4 lies in the Si-N-Si bond angles of 161.0 and 174.4°, respectively, which shows the sensitivity of the valence angle at the nitrogen atom to the variation in the substituents and hence in the intramolecular strain.

Fig. 1

Crystal data

4: $C_{21}H_{47}NOSi_2$, M = 385.8, monoclinic, space group $P2_1/c$, $a \ 1115.6(1)$, $b \ 1143.9(2)$, $c \ 2005.6(2)$ pm, $\beta \ 101.55(1)^\circ$, $U \ 2.508$ nm³, Z = 4, $D_c = 1.022$ M g cm⁻³,

Table 1

Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($pm^2 \times 10^{-1}$)

	. , .	• • • • • •					
	x	у	Z	U_{eq}^{a}			
Si(1)	2006(1)	5629(1)	1784(1)	24(1)			
Si(2)	2561(1)	7619(1)	727(1)	24(1)			
N(1)	2291(2)	6652(2)	1297(1)	26(1)			
O(1)	269(2)	5583(2)	1633(1)	37(1)			
C(11)	- 459(2)	6050(3)	993 (1)	42(1)			
C(12)	-1671(3)	6296(3)	1154(2)	60(1)			
C(13)	-1812(3)	5419(3)	1688(2)	62(1)			
C(14)	- 574(3)	5181(3)	2070(2)	68(1)			
C(2)	2311(3)	4065(2)	1533(1)	37(1)			
C(21)	1958(3)	3966(2)	756(1)	43(1)			
C(22)	1588(4)	3103(2)	1825(2)	75(2)			
C(23)	3675(3)	3817(3)	1744(2)	66(1)			
C(3)	2437(2)	5961(2)	2736(1)	33(1)			
C(31)	2270(3)	4987(3)	3236(1)	44(1)			
C(32)	3807(3)	6281(3)	2871(1)	57(1)			
C(33)	1753(3)	7057(3)	2891(1)	59(1)			
C(4)	2149(2)	9176(2)	972(1)	33(1)			
C(41)	2083(3)	10072(2)	390(2)	50(1)			
C(42)	3050(3)	9620(2)	1598(1)	47(1)			
C(43)	877(3)	9134(2)	1151(2)	44(1)			
C(5)	4224(2)	7496(2)	611(1)	35(1)			
C(51)	5095(3)	7376(3)	1305(2)	50(1)			
C(52)	4663(3)	8519(3)	229(2)	53(1)			
C(53)	4354(3)	6381(3)	207(2)	56(1)			
C(6)	1561(3)	7365(2)	-143(1)	40(1)			

^a Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

Bond lengths (pm)					
Si(1)-N(1)	159.6(2)	Si(1)-O(1)	190.2(2)		
Si(1)-C(2)	190.7(3)	Si(1)-C(3)	191.1(2)		
Si(2)-N(1)	166.1(2)	Si(2)-C(4)	192.7(3)		
Si(2) - C(5)	192.1(3)	Si(2)-C(6)	189.7(2)		
O(1)-C(11)	147.4(3)	O(1)-C(14)	148.2(4)		
C(11)-C(12)	147.7(4)	C(12)-C(13)	149.9(5)		
C(13)-C(14)	146.5(4)	C(2)-C(21)	153.4(4)		
C(2)-C(22)	154.7(5)	C(2)-C(23)	152.2(4)		
C(3)-C(31)	153.6(4)	C(3)-C(32)	154.2(4)		
C(3)-C(33)	153.1(4)	C(4)-C(41)	154.4(4)		
C(4)-C(42)	152.9(4)	C(4)-C(43)	153.2(4)		
C(5)-C(51)	153.6(4)	C(5)-C(52)	153.2(4)		
C(5)-C(53)	153.3(4)				

F(000) = 864, $\lambda(\text{Mo-}K_{\alpha})$ 71.073 pm, μ 0.15 mm⁻¹, crystal size 0.7 × 0.8 × 0.9 mm³, data-collection on a Stoe-Siemens AED diffractometer at -120 °C, 5036 reflections with $2\theta < 45$ °, 2810 unique data with $F > 4\sigma(F)$.

Structure determination

The structure was solved by multisolution direct methods [9] and refined, with all non H-atoms anisotropic, to a minimum $\Sigma w\Delta^2$ ($\Delta = |F_o| - |F_c|$; $w^{-1} = \sigma^2$ (F) + gF^2 with g = 0.0001). Hydrogen atoms were allowed to ride on the carbon atoms at a C-H distance of 100 pm. U_{eq} for groups of equivalent hydrogen atoms were

Table	3
-------	---

Bond angles (°)

N(1)-Si(1)-O(1)	104.2(1)	N(1)-Si(1)-C(2)	117.3(1)
O(1) - Si(1) - C(2)	99.3(1)	N(1)-Si(1)-C(3)	115.1(1)
O(1)-Si(1)-C(3)	102.0(1)	C(2)-Si(1)-C(3)	115.3(1)
N(1)-Si(2)-C(4)	110.8(1)	N(1)-Si(2)-C(5)	110.3(1)
C(4)-Si(2)-C(5)	112.6(1)	N(1)-Si(2)-C(6)	112.1(1)
C(4) - Si(2) - C(6)	104.5(1)	C(5)-Si(2)-C(6)	106.3(1)
Si(1)-N(1)-Si(2)	174.3(1)	Si(1) - O(1) - C(11)	119.7(2)
Si(1)-O(1)-C(14)	131.4(2)	C(11)-O(1)-C(14)	108.9(2)
O(1)-C(11)-C(12)	104.4(2)	C(11)-C(12)-C(13)	105.1(3)
C(12)-C(13)-C(14)	106.0(3)	O(1)-C(14)-C(13)	106.0(3)
Si(1)-C(2)-C(21)	108.3(2)	Si(1)-C(2)-C(22)	115.7(2)
C(21)-C(2)-C(22)	106.5(2)	Si(1)-C(2)-C(23)	108.8(2)
C(21)-C(2)-C(23)	107.9(2)	C(22) - C(2) - C(23)	109.3(2)
Si(1)-C(3)-C(31)	118.0(2)	Si(1)-C(3)-C(32)	105.4(2)
C(31)-C(3)-C(32)	107.6(2)	Si(1)-C(3)-C(33)	109.2(2)
C(31)-C(3)-C(33)	109.3(2)	C(32)-C(3)-C(33)	106.7(2)
Si(2)-C(4)-C(41)	113.5(2)	Si(2)-C(4)-C(42)	111.4(2)
C(41)-C(4)-C(42)	108.9(2)	Si(2)-C(4)-C(43)	108.1(2)
C(41)-C(4)-C(43)	107.0(2)	C(42)-C(4)-C(43)	107.8(2)
Si(2)-C(5)-C(51)	110.3(2)	Si(2)-C(5)-C(52)	114.7(2)
C(51)-C(5)-C(52)	108.3(2)	Si(2)-C(5)-C(53)	108.8(2)
C(51)-C(5)-C(53)	107.1(2)	C(52)-C(5)-C(53)	107.3(2)

Table 2

refined isotropically. Complex scattering factors were employed [10]. Final difference synthese shows no significant features. 241 parameters, R = 0.041, R_w $(= (\sum w\Delta^2 / \sum w F_o^2)^{1/2}) = 0.042$. Lists of H-atom coordinates and calculated and observed structure factors are available from the authors.

Summary

The synthesis of iminosilanes based on fluorine-chlorine exchange at lithiumaminofluorosilanes followed by elimination of lithiumchloride shows the following features: (a) the method is a general one in the sense that it can be applied to differently-substituted aminosilanes; (b) the iminosilanes obtained, whether as THF adducts or free imines are formed, in good yield; (c) the tedious and sometimes complicated synthesis of aminochlorosilanes as precursors is avoided since the fluorine-chlorine exchange takes place in one step in the lithium derivative.

Experimental

Silylamines 1 and 2

A solution of 0.1 mole of $(Me_3C)_2$ MeSiNHLi in 50 ml THF was treated with 0.1 mole of $(Me_3C)_2$ SiF₂. The solution was boiled under reflux for 40 h. The products 1 and 2 were isolated by distillation.

Di-tert-butylfluorosilyl(di-tert-butylmethylsilyl)amine (1)

C₁₇H₄₀FNSi₂ (333.7), b.p. 78°C/0.01 mbar, yield 25.0 g (75%). MS: (F.J.) m/z(%) = 333 (22) $[M]^+$. IR: $\tilde{\nu}$ = 3359 (NH). NMR: (CDCl₃/TMS). ¹H: δ = 0.14 (D, ⁵J(HF) = 0.9 Hz, SiMe, 3H); 1.0 (SiCMe₃, 18H); 1.05 (D, ⁴J(HF) = 1.0 Hz, (FSiCMe₃, 18H); ¹³C: δ = -6.91 (D, ⁴J(CF) = 2.67 Hz, SiC, 1C); 20.66 (D, ⁴J(CF) = 0.46 Hz, SiCC₃, 2C); 20.84 (D, ²J(CF) = 15.30 Hz, FSiCC₃, 2C); 27.94 (D, ³J(CF) = 0.66 Hz, FSiCC₃, 6C); 28.30 (D, ⁵J(CF) = 0.60 Hz, SiCC₃, 6C). ¹⁵N: δ = -371.56 (D, ²J(NF) = 6.06 Hz). ¹⁹F: δ = -2.69 (D, ³J(HF) = 11.5 Hz). ²⁹Si: δ = 3.42 (D, ¹J(SiF) = 299.67 Hz, SiF, 1Si); 9.84 (D, ³J(SiF) = 0.96 Hz, SiMe, 1Si).

1,1,3,3,5,5-Hexa-tert-butyl-1,5-dimethyl-1,3,5-trisilazane (2)

 $C_{26}H_{62}N_2Si_3$ (487,1), b.p. 135°C/0.01 mbar, yield 0.7 g (15%) MS: (F.J.) m/z(%) = 429 (79) $[M - CMe_3]^+$. NMR: (CDCl₃/TMS). ¹H: $\delta = 0.16$ (SiMe, 6H); 1.00 (SiCMe₃, 36H); 1.06 (SiCMe₃, 18H). ¹³C: $\delta = -5.32$ (SiC, 2C); 21.37 (SiCC₃, 4C); 22.65 (SiCC₃, 2C); 29.10 (SiCC₃, 12C); 29.78 (SiCC₃, 6C). ²⁹Si: $\delta = -0.73$ (SiCC₃, 1Si); 7.69 (SiCC₃ 2Si).

Lithium-di-tert-butylfluorosilyl(di-tert-butyl-methylsilyl)amide-THF adduct (3)

0.05 mole of compound 1 was treated with 0.05 mole of $n-C_4H_9Li$ (15% in hexane) to give 3, which was purified by crystallization from hexane/THF. $C_{25}H_{55}FLiNO_2Si_2$ (483.9), yield 20.6 g (85%). NMR: (C_6D_6) . ¹H: $\delta = 0.24$ (SiMe, 3H); 1.23 (SiCMe_3, 18H); 1.31 (D, ⁴J(HF) = 1.02 Hz, (FSiCMe_3, 18H); 1.35 (O(CH_2CH_2)_2, 8H); 3.46 (O(CH_2CH_2)_2, 8H). ⁷Li: $\delta = -0.16$. ¹³C: $\delta = -0.95$ (D, ⁴J(CF) = 1.89 Hz, SiC, 1C); 22.34 (D, ⁴J(CF) = 0.58 Hz, SiCC_3, 2C); 22.80 (D, ²J(CF) = 20.62 Hz, FSiCC_3, 2C); 25.36 (O(C_2C_2), 4C); 29.83 (FSiCC_3, 6C); 30.56 (SiCC_3, 6C; 68.32 (O(C_2C_2), 4C). ¹⁹F: $\delta = 9.88$. ²⁹Si: $\delta = 11.14$ (D, ³J(SiF) = 11.35 Hz, SiMe, 1Si); -4.21 (D, ¹J(SiF) = 225.65 Hz, SiF, 1Si).

Di-tert-butyl(di-tert-butylmethylsilyl)iminosilane-THF adduct (4)

A solution of 0.02 mole of 3 in 50 ml hexane/THF was treated with 0.02 mole of Me₃SiCl and the mixture stirred for 8 h. The formation of Me₃SiF was monitored by ¹⁹F-NMR spectroscopy. 4 was separated from LiCl by distillation *in vacuo* and purified by recrystallization from benzene. $C_{21}H_{47}NOSi_2$ (385.8), b.p. 60-70 °C/0.01 mbar. NMR: (C_6D_6) . ¹H: $\delta = 0.05$ (SiMe, 3H); 1.08 (SiCMe₃, 18H); 1.15 (SiCMe₃, 18H); 1.37 (O(CH₂CH₂)₂, 4H); 3.95 (O(CH₂CH₂)₂, 4H). ¹³C: $\delta = -2.59$ (SiC, 1C); 22.31 (CSiCC₃, 2C); 24.50 (OSiCC₃, 2C); 24.55 (O(C₂C₂), 2C); 29.79 (CSiCC₃, 6C); 30.37 (OSiCC₃, 6C); 73.78 (O(C₂C₂), 2C). ¹⁴N: $\delta = -329.08$. ²⁹Si: $\delta = -14.57$ (CSiCC₃, 1 Si); 3.60 (OSiCC₃, 1Si).

1,1,3,3,5,5,7,7-Octa-tert-butyl-1,7-dimethyl-1,3,5,7-tetra-sila-2,6,-diaza-4-oxane (5)

The presence of traces of moisture led to formation of some 5 during the synthesis of 4. 5 was purified by recrystallization from THF. $C_{34}H_{80}N_2OSi_4$ (645.4) Sublimation: $\approx 110^{\circ}$ C/0.01 mbar. MS: (EI) m/z (%) = 587 (100) $[M - CMe_3]^+$. IR: $\tilde{\nu} = 3314$ (NH) (in CDCl₃). NMR: ¹H: $\delta = 0.18$ (SiMe, 6H); 1.01 (SiCMe₃, 36H); 1.13 (SiCMe₃, 36H). ¹³C: $\delta = -4.41$ (C, 2C); 21.62 (CC₃, 4C); 21.99 (CC₃, 4C); 29.33 (CC₃, 12C); 29.73 (CC₃, 12C). ²⁹Si: $\delta = -9.32$ (SiO, 1Si); 7.07 (SiMe, 1Si).

Acknowledgements

We thank the Deutschen Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References

- 1 R. West, M.J. Fink and J. Michl, Science, 214 (1981) 1343.
- 2 See references in A.G. Brook and K.M. Baines, Adv. Organomet. Chem., 25 (1986) 1.
- 3 M. Hesse and U. Klingebiel, Angew. Chem., 98 (1986) 638.
- 4 D. Stalke, N. Keweloh, U. Klingebiel, M. Noltemeyer and G.M. Sheldrick, Z. Naturforsch. B, 42 (1987) 1237.
- 5 N. Wiberg, K. Schurz, G. Reber and G. Müller, J. Chem. Soc., Chem. Commun., 591 (1986).
- 6 R. Boese and U. Klingebiel, J. Organomet. Chem., 315 (1986) C17.
- 7 U. Klingebiel in Silicon and Bioorganosilicon Chemistry, Ellis Horwood, Chicester, 1988, Chap. 31, p. 337.
- 8 P.v.R. Schleyer and P.D. Stout, J. Chem. Soc., Chem. Commun., 1373 (1986).
- 9 G.M. Sheldrick, Acta Crystallogr., Sect. A, 46 (1990) 467.
- 10 International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham, UK, p. 99 and 149.